国产精品chinese,色综合天天综合精品网国产在线,成午夜免费视频在线观看,清纯女学生被强行糟蹋小说

    <td id="ojr13"><tr id="ojr13"><label id="ojr13"></label></tr></td>
        • <source id="ojr13"></source>
            <td id="ojr13"><ins id="ojr13"><label id="ojr13"></label></ins></td>

            Article / 文章中心

            Python數(shù)據(jù)分析與展示:matplotlib繪圖簡單示例

            發(fā)布時間:2021-11-23 點擊數(shù):574

            圖形的適用場景

            關注分類變量各分類的比例,用餅圖  關注變量的頻率分布,用直方圖  關注變量的變化趨勢,用折線圖  關注兩個變量的相關,用散點圖  展示一個變量的集中趨勢和離散趨勢,用箱圖

            導入庫

            # -*- coding: utf-8 -*-  # @File    : pylot_demo.py # @Date    : 2018-05-14  import numpy as np import matplotlib.pyplot as plt

            餅圖的繪制

            def plot_pie1():  labels = "Forgs", "Hogs", "Dogs", "Logs"   sizes = [15, 30, 45, 10]   explode = (0, 0.1, 0, 0)   plt.pie(sizes, explode, labels, autopct='%1.1f%%', shadow=False, startangle=90)  plt.savefig("pie1", dpi=600)  plt.show()

            a13.1.png

            def plot_pie2():  labels = "Forgs", "Hogs", "Dogs", "Logs"   sizes = [15, 30, 45, 10]   explode = (0, 0.1, 0, 0)   plt.pie(sizes, explode, labels, autopct='%1.1f%%', shadow=False, startangle=90)   plt.axis("equal")  plt.savefig("pie2", dpi=600)  plt.show()

            a13.2.png


            直方圖的繪制

            def plot_hist():  np.random.seed(0)  mu, sigma = 100, 20  # 均值和標準差  a = np.random.normal(mu, sigma, size=100)   # bins直方圖的個數(shù)  plt.hist(a, 20, normed=1, histtype="stepfilled", facecolor="b", alpha=0.75)  plt.title("histogram")  plt.savefig("hist", dpi=600)   plt.show()

            a13.3.png


            繪制極坐標圖

            def plot_polar():  N = 20  theta = np.linspace(0.0, 2*np.pi, N, endpoint=False)  radii = 20 * np.random.randn(N)  width = np.pi / 4 * np.random.randn(N)   ax = plt.subplot(111, projection="polar")  bars = ax.bar(theta, radii, width=width, bottom=0.0)   for r, bar in zip(radii, bars):  bar.set_facecolor(plt.cm.viridis(r/10.))  bar.set_alpha(0.5)   plt.savefig("polar", dpi=600)   plt.show()

            a13.4.png


            繪制散點圖

            def plot_scatter():  fig, ax = plt.subplots()  ax.plot(10*np.random.randn(100), 10*np.random.randn(100), "o")  ax.set_title("simple scatter")  plt.savefig("scatter", dpi=600)   plt.show()

            a13.5.png